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Rigorous Formulation for Fields and Currents

in Superconducting Microwave Transmission
Lines

Samir M. E1-Ghazaly,

Ab,stract-A direct approach is described for obtaining cur-
rent dktributions, power handling capabilities, and propagation
characteristics of high TC superconductor microwave lines. A
rigorous formulation based on coupling a full-wave electromag-
netic model with London’s equations and the two fluid model
for superconducting materials is suggested. The finite-difference
scheme is employed to obtain a simplified solution. Calculated
results showing current distributions and quality factor of a
superconducting microstrip line are presented.

I. INTRODUCTION

I NCORPORATING high TC superconducting (HTS) mate-

rials in planar transmission lines is very promising for high

speed digital [1], and high frequency analog [2] applications.

Before full exploitation of the HTS’S, their current and power

handling capacities need to be assessed. Knowing the critical

current density of the material does not directly lead to the

maximum current that can be carried by the transmission line

since the current is not uniformly distributed in the cross-sec-

tion. Superconducting microwave devices were theoretically

investigated to obtain their propagation characteristics [3],

[4]. In this letter, London’s equations and the two-fluid

model are used to investigate the current distributions on

HTS transmission lines. They are coupled with Maxwell’s

equations to develop a rigorous full-wave model. The total

current carried by an HTS microstrip line without exceeding

the critical current density of the material as well as the total

power can be calculated. The losses due to normal electrons

and the Q-factor are directly obtained. Initial calculations

have been performed. Preliminary results, aiming at demon-

strating the potantial of this approach, are presented. The

flexibility of this technique is appreciated by noticing that it

can easily be modified to incorporate complex issues of HTS

materials, including the nonlinearity of the parameters and

the anisotropy.

II. CURRENTSAND FIELDS IN SUPERCONDUCTINGLINES

HTS materials (e.g., TlzBazCa2Cu3010) are considered

type-II superconductors, which usually considered as having

a coherence length much smaller than the penetration depth.
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The current carrying mechanism in Type-II superconductors

is considered a local phenomenon, which means that the

current density at any point may be described by the local

field at the same point. London’s equations and the two-fluid

model can be used to microscopically predict the relation

between the local field and the current density. The conduct-

ing electrons in a superconductor are divided into two cate-

gories: superconducting electrons, known as Cooper pairs or

electron pairs, and normal electrons [5]. The electron pair

transport is assumed to be collision-free, while the normal

electron transport is governed by the momentum conservation

equation. London’s equations, which relate the local electro-

magnetic fields and the superconducting current density J.

and the penetration depth A, are as follows,

aJ, 1
— E,

at = pox’

–1
VxJ~=—

)’? ‘“

(1)

(2)

Assuming that both London’s equations and the two-fluid

model are valid for the frequency range of interest, the

fall-wave analysis can be derived as follows. The starting

point is Maxwell’s equation,

VxH=jucE+J. +Jn, (3)

where J. is the normal current density, and time dependence

in the form eJ”r ‘N understood. Substituting (1) and writing

J. = rJ.E, in (3) results in

VxH=~J~, (4)
where

Using the magnetic vector potential A to replace If in (2),

via the definition H = (V x A )/p., one obtains

–1
J. = —- A+vw,

/LoA’
(6)

where V is a scalar function to be determined from the

boundary conditions. Using (6) to eliminate J. from (4)

results in the following for A:

V2A – ;A = –KO$VV, (7)

where Coulomb’s gauge (V. A = O) was used.
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Equation (7) is a distorted form of a nonhomogeneous III. SIMPLIFIED SOLUTIONAND RESULTS

vector wave equation. We labeled it distorted due to the term A simplified, yet accurate, solution for the previous de-
“’$/hZ,” which is different from the conventional wave

number. It is used in the different media to describe the
rived equations can ‘be obtained knowing that for typical HTS

materials, ~ = 1 for frequencies up to 1012 Hz. Moreover,
magnetic vector potential distribution by supplying the appro- *

priate values of c, L and o., assuming that p = P. every-
e practical microwave lines are normally operated in the

where. In the air and dielectric regions of the transmission
quasi-TEM mode. Hence, (7) reduces to

line, (7) reduces to the conventional homogeneous vector

wave equation.

The variable VW appearing in (6) and subsequent ones, is

directly related to the superconducting current distributions.

The equation governing this function can be derived by

substituting (6) in Maxwell’s curl equation as follows.

1
VxH=jueE– —A+VIk+Jn. (8)

p~ F

Taking the divergence of (8), using Coulomb’s gauge and

V “ E = p/c yields

V2W = -j@(p – pn), (9)

where p and pn are the total and normal charge densities

respectively, Equation (9) is the basic definition for the

complementary part of the superconductor current density.

The relation between p and pn is obtained from the two fluid

model. ,

To gain a physical insight into and assess the importance of

V*, assume pn ‘< p and quasi-TEM wave propagation with

dependence e ‘jBz. Therefore, the current density flows along

the direction of the wave propagation. In this case, only the

z-component of VV is needed. Hence, V* ‘k simplifies to

which leads to

V*. az= ‘p = VPh P,

b

(lo)

(11)

where UP~is the phase velocity of the propagating wave. This

shows that VW is a two-dimensional function related to the

surface current density on the superconductor surface since p

is zero everywhere except near the surface. Due to the strong

singultiity exhibited by p at the sharp edges, this function

evidently plays an important role in shaping all the current

and field distributions. Alsop et al. derived expressions for

the current distributions in superconductors at dc. However,

VV was considered as a constant in their analysis [6]. This

results in inaccurate results in both current and field distribu-

tions in microwave structures. Moreover, this leads to non-

physical results in the form of current distributions in a

superconducting transmission line that are independent of the

dielectric constants of the substrates. It is worth mentioning

that sometimes this function could be approximated by a

constant as, for example, the case of a very wide microstrip

line over a thin substrate and a thick superconductor (i.e.,

W‘> d and t‘> h).Yet, the significance of this approxima-

tion is that the microstrip line is approximated as a parallel-

plate transmission line, which is a trivial one-dimensional

case.

(12a)

and

V;AZ = O, (12b)

where V: is the Laplacian operator in the transverse plane

(i.e., X-Y plane), (12a) is used inside the superconductor and

(12b) is used in the air and dielectric regions. The current

flows only axially in the z direction. These two equations are

discretized over the transverse plane using the finite-

difference scheme and solved for A z. Once A z is obtained,

the current and field distributions are readily calculated. The

normal current density and the losses are calculated using the

two fluid model and the perturbation approach.

To demonstrate the potential of this approach, it was

applied to the HTS microstrip line structure shown in Fig. 1;

with 2 W = 500 ~m, d = 425 ~m and t = 1 pm. The sub-

strate is made of a loss-less material, which has a relative

dielectric constant of 23. The superconductor is characterized

by TC = 100 K, the penetration depth at T = O K, is A(O) =

0.18 pm, the density of electrons is 1021 cm-3, and the

conductivity of normal electrons u~ = 104 S/cm at TC. A

nonuniform two dimensional mesh is used. The simulation

region is extended to 12W in the x direction, and to 5 d in

the y direction. Magnetic walls are used to terminate the

open boundaries. Exploiting the symmetry about the x axis,

only one half of the structure is simulated.

Fig. 2 shows the current density distributions inside the

HTS strip as functions of x at constant y planes, at T = 50

K. The total current carried by the strip is normalized to. 100

mA. It is shown that the current is mainly carried by the

superconductor surface adjacent to the dielectric substrate.

The current decreases with the increase of y, and it slightly

increases as y approaches t as shown in the insert in Fig. 2.

This phenomenon is due to the high dielectric constant of the

material used in the substrate, which represents one of the

typical materials currently used in industry. The unloaded

quality factor Q of the strip is shown in Fig. 3. A monotonous

decrease of the Q with frequency and temperature is shown

as expected.

IV. CONCLUSION

A rigorous formulation for HTS microwave lines is pre-

sented. It couples a full-wave electromagnetic model with

both London’: equations and the two-fluid model. An approx-
imate solution for the derived equation is developed using the

finite difference scheme. The potential of this technique is

demonstrated by investigating current density distributions

and Q of a superconductor microstrip line. This technique

can be applied to other planar transmission lines with super-

conducting materials.
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Fig. 1. Simulated microstrip line.
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Fig. 2. Current density distributions inside the superconducting strip as

functions of x at constant y planes.
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Fig. 3. Unloaded Q as a function of frequency at different temperatures.
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