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Rigorous Formulation for Fields and Currents
in Superconducting Microwave Transmission
Lines

Samir M. El-Ghazaly, Senior Member, IEEE

Abstract—A direct approach is described for obtaining cur-
rent distributions, power handling capabilities, and propagation
characteristics of high T, superconductor microwave lines. A
rigorous formulation based on coupling a full-wave electromag-
netic model with London’s equations and the two fluid model
for superconducting materials is suggested. The finite-difference
scheme is employed to obtain a simplified solution. Calculated
results showing current distributions and quality factor of a
superconducting microstrip line are presented.

I. INTRODUCTION

NCORPORATING high T, superconducting (HTS) mate-

rials in planar transmission lines is very promising for high
speed digital [1], and high frequency analog [2] applications.
Before full exploitation of the HTS’s, their current and power
handling capacities need to be assessed. Knowing the critical
current density of the material does not directly lead to the
maximum current that can be carried by the transmission line
since the current is not uniformly distributed in the cross-sec-
tion. Superconducting microwave devices were theoretically
investigated to obtain their propagation characteristics [3],
[4]. In this letter, London’s equations and the two-fluid
model are used to investigate the current distributions on
HTS transmission lines. They are coupled with Maxwell’s
equations to develop a rigorous full-wave model. The total
current carried by an HTS microstrip line without exceeding
the critical current density of the material as well as the total
power can be calculated. The losses due to normal electrons
and the Q-factor are directly obtained. Initial calculations
have been performed. Preliminary results, aiming at demon-
strating the potantial of this approach, are presented. The
flexibility of this technique is appreciated by noticing that it
can easily be modified to incorporate complex issues of HTS
materials, including the nonlinearity of the parameters and
the anisotropy.

II. CURRENTS AND FIELDS IN SUPERCONDUCTING LINES

HTS materials (e.g., Tl,Ba,Ca,Cu,0,,) are considered
type-1I superconductors, which usually considered as having
a coherence length much smaller than the penetration depth.
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The current carrying mechanism in Type-II superconductors
is considered a local phenomenon, which means that the
current density at any point may be described by the local
field at the same point. London’s equations and the two-fluid
model can be used to macroscopically predict the relation
between the local field and the current density. The conduct-
ing electrons in a superconductor are divided into two cate-
gories: superconducting electrons, known as Cooper pairs or
electron pairs, and normal electrons [5]. The electron pair
transport is assumed to be collision-free, while the normal
electron transport is governed by the momentum conservation
equation. London’s equations, which relate the local electro-
magnetic fields and the superconducting current density J,
and the penetration depth A, are as follows.

aJ 1
=—F5E, (1)
at Ho N
-1
VXJS= _)\Z—H (2)

Assuming that both London’s equations and the two-fluid
model are valid for the frequency range of interest, the
full-wave analysis can be derived as follows. The starting
point is Maxwell’s equation,

VXH=jweE+J,+J,, (3)

where J,, is the normal current density, and time dependence
in the form e/’ is understood. Substituting (1) and writing
J, = 0,E, in (3) results in

VXH=EJ, (4)
where

£ = —w’ugeX + jopya, N + 1. (5)
Using the magnetic vector potential A4 to replace H in (2),
via the definition H = (V X A)/p,, one obtains

J -1
* lJl0>\2

A+ VY, (6)

where ¥ is a scalar function to be determined from the
boundary conditions. Using (6) to eliminate J, from (4)
results in the following for 4:

3
V4 — ?A = —uE VY, (7)

where Coulomb’s gauge (V. A4 = 0) was used.
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Equation (7) is a distorted form of a nonhomogeneous
vector wave equation. We labeled it distorted due to the term
“E/ X, which is different from the conventional wave
number. It is used in the different media to describe the
magnetic vector potential distribution by supplying the appro-
priat¢ values of €, A and o,, assuming that p = p, every-
where. In the air and dielectric regions of the transmission
line, (7) reduces to the conventional homogeneous vector
wave equation.

The variable V¥ appearing in (6) and subsequent ones, is
directly related to the superconducting current distributions.
The equation governing this function can be derived by
substituting (6) in Maxwell’s curl equation as follows.

V><H=jweE——1-2—A+V‘I/+J,,. (8)
o X
Taking the divergence of (8), using Coulomb’s gauge and
V- E = p/e yields

VI¥ = —ju(p = p), 9)

where p and p, are the total and normal charge densities
respectively. Equation (9) is the basic definition for the
complementary part of the superconductor current density.
The relation between p and p,, is obtained from the two fluid
model.

To gain a physical insight into and assess the importance of
V¥, assume p, < p and quasi-TEM wave propagation with
dependence e~/#%. Therefore, the current density flows along
the direction of the wave propagation. In this case, only the
z-component of V¥ is needed. Hence, V2¥ simplifies to
(10)

d
V¥ =~ o V¥.a,= —-jfvV¥.a,,

which leads to

w

V¥.a, = Ep———vphp, (11)
where vy, is the phase velocity of the propagating wave. This
shows that V¥ is a two-dimensional function related to the
surface current density on the superconductor surface since p
is zero everywhere except near the surface. Due to the strong
singularity exhibited by p at the sharp edges, this function
evidently plays an important role in shaping all the current
and field distributions. Alsop et al. derived expressions for
the cutrent distributions in superconductors at dc. However,
V¥ was considered as a constant in their analysis [6]. This
results in inaccurate results in both current and field distribu-
tions in microwave structures. Moreover, this leads to non-
physical results in the form of current distributions in a
superconducting transmission line that are independent of the
dielectric constants of the substrates. It is worth mentioning
that sometimes this function could be approximated by a
constant as, for example, the case of a very wide microstrip
line over a thin substrate and a thick superconductor (i.e.,
W= dand t > N. Yet, the significance of this approxima-
tion is that the microstrip line is approximated as a parallel-
plate transmission line, which is a trivial one-dimensional
case.
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III. SIMPLIFIED SOLUTION AND RESULTS

A simplified, yet accurate, solution for the previous de-
rived equations can be obtained knowing that for typical HTS
materials, § = 1 for frequencies up to 10'? Hz. Moreover,
the practical microwave lines are normally operated in the
quasi-TEM mode. Hence, (7) reduces to

1
V,zAz— ;\Z—Az= - V¥.a,, (12a)
and
V,zAz =0, (12b)

where V? is the Laplacian operator in the transverse plane
(i.e., xy plane), (12a) is used inside the superconductor and
(12b) is used in the air and dielectric regions. The current
flows only axially in the z direction. These two equations are
discretized over the transverse plane using the finite-
difference scheme and solved for A ;. Once A, is obtained,
the current and field distributions are readily calculated. The
normal current density and the losses are calculated using the
two fluid model and the perturbation approach.

To demonstrate the potential of this approach, it was
applied to the HTS microstrip line structure shown in Fig. 1;
with 2W = 500 pm, d = 425 pm and ¢ = 1 um. The sub-
strate is made of a loss-less material, which has a relative
dielectric constant of 23. The superconductor is characterized
by T, = 100 K, the penetration depth at 7= 0 K, is A0) =
0.18 um, the density of electrons is 102! cm™3, and the
conductivity of normal electrons o, ~ 10* S/cm at T.. A
nonuniform two dimensional mesh is used. The simulation
region is extended to 12W in the x direction, and to 5d in
the yp direction. Magnetic walls are used to terminate the
open boundaries. Exploiting the symmetry about the x axis,
only one half of the structure is simulated.

Fig. 2 shows the current density distributions inside the
HTS strip as functions of x at constant y planes, at 7 = 50
K. The total current carried by the strip is normalized to- 100
mA. It is shown that the current is mainly carried by the
superconductor surface adjacent to the dielectric substrate.
The current decreases with the increase of y, and it slightly
increases as y approaches ¢ as shown in the insert in Fig. 2.
This phenomenon is due to the high dielectric constant of the
material used in the substrate, which represents one of the
typical materials currently used in industry. The unloaded
quality factor Q of the strip is shown in Fig. 3. A monotonous
decrease of the Q with frequency and temperature is shown
as expected.

IV. ConNcLusION

A rigorous formulation for HTS microwave lines is pre-
sented. Tt couples a full-wave electromagnetic model with
both London’s equations and the two-fluid model. An approx-
imate solution for the derived equation is developed using the
finite difference scheme. The potential of this technique is
demonstrated by investigating current density distributions
and Q of a superconductor microstrip line. This technique
can be applied to other planar transmission lines with super-
conducting materials.
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